| |
| |
|
|
| |
|
|
| |
Literatura
|
|
| |
[1] J. Anderson. Anderson J. Hypersonic and high temperature gas dynamics. McGraw-Hill Inc., 1989.
[2] ANSYS, Inc. Fluent. http://www.fluent.com.
[3] A. Aota, K. Mawataria, and T. Kitamori. Parallel multiphase microflows: fundamental physics, stabilization methods
and applications. Lab Chip, 17(9):2470–2479, 2009.
[4] M. Bemaschi, M. Fatica, S. Melchionna, S. Succi, and E. Kaxiras. A flexible high-performance lattice boltzmann GPU
code for the simulations of fluid flows in complex geometries. Concurrency Computation Practice and Experience,
22(1):1–14, 2010.
[5] B. Y. Cao, J. Sun, M. Chen, and Z. Y. Guo. Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS:
A review. Int. J. Mol. Sci., 11(10):4638–4706, 2009.
[6] I.-J. Chen, E.C. Eckstein, and E. Lindner. Computation of transient flow rates in passive pumping micro-fluidic systems.
Lab on a Chip - Miniaturisation for Chemistry and Biology, 9(1):107–114, 2009.
[7] C.D. Chin, V. Linder, and S.K. Sia. Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab
on a Chip - Miniaturisation for Chemistry and Biology, 7(1):41–57, 2007.
[8] G. De Micheli. An outlook on design technologies for future integrated systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 28(6):777–790, 2009.
[9] S.R. Deshmukh and D.G. Vlachos. Novel micromixers driven by flow instabilities: Application to post-reactors. AIChE
Journal, 51(12):3193–3204, 2005.
[10] A. Dupuis and B. Chopard. Theory and applications of an alternative lattice Boltzmann grid refinement algorithm.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 67(6 2):066707/1–066707/7, 2003.
[11] L.J. Golonka, H. Roguszczak, T. Zawada, J. Radojewski, I. Grabowska, M. Chudy, A. Dybko, Z. Brzozka, and
D. Stadnik. LTCC based microfluidic system with optical detection. Sensors and Actuators, B: Chemical, 111-
112(SUPPL.):396–402, 2005.
[12] I. Grabowska, M. Sajnoga, M. Juchniewicz, M. Chudy, A. Dybko, and Z. Brzozka. Microfluidic system with electrochemical
and optical detection. Microelectronic Engineering, 84(5-8):1741–1743, 2007.
[13] J. Habich, T. Zeiser, G. Hager, and G. Wellein. Performance analysis and optimization strategies for a d3q19 lattice
boltzmann kernel on nvidia gpus using cuda. Advances in Engineering Software, 42(5):266–272, 2011.
[14] V. Hessel, Renken A., Schouten J. C., and J. I. Yoshida. Micro Process Engineering, A comprehensive Handbook,
Volume 1: Fundamentals, Operations and Catalysts. Wiley-VCH Verlag, 2009.
[15] Z. Jaworski. Numeryczna mechanika płynów w inżynierii chemicznej i procesowej. Akademicka Oficyna Wydawnicza
EXIT, 2005.
[16] R. Lindken, M. Rossi, S. Große, and J. Westerweel. Micro-Particle Image Velocimetry (PIV): Recent developments,
applications, and guidelines. Lab on a Chip - Miniaturisation for Chemistry and Biology, 9(17):2551–2567, 2009.
[17] K. Malecha, D.G. Pijanowska, L.J. Golonka, and W. Torbicz. LTCC microreactor for urea determination in biological
fluids. Sensors and Actuators, B: Chemical, 141(1):301–308, 2009.
[18] Z. Malecha, Ł. Mirosław, T. Tomczak, Z. Koza, M. Matyka, W. Tarnawski, and D. Szczerba. GPU-based simulation of
3D blood flow in abdominal aorta using OpenFOAM. Archives of Mechanics, 63(2):137–161, 2011.
[19] J. Myre, S.D.C. Walsh, D. Lilja, and M.O. Saar. Performance analysis of single-phase, multiphase, and multicomponent
lattice-Boltzmann fluid flow simulations on GPU clusters. Concurrency Computation Practice and Experience,
23(4):332–350, 2011.
[20] R. Przekop and L. Gradon. Deposition and filtration of nanoparticles in the composites of nano- and microsized fibers.
Aerosol Science and Technology, 42(6):483–493, 2008.
[21] A.F. Sauer-Budge, P. Mirer, A. Chatterjee, C.M. Klapperich, D. Chargin, and A. Sharon. Low cost and manufacturable
complete microTAS for detecting bacteria. Lab on a Chip - Miniaturisation for Chemistry and Biology, 9(19):2803–
2810, 2009.
[22] R.B. Schoch, M. Ronaghi, and J.G. Santiago. Rapid and selective extraction, isolation, preconcentration, and quantitation
of small RNAs from cell lysate using on-chip isotachophoresis. Lab on a Chip - Miniaturisation for Chemistry and
Biology, 9(15):2145–2152, 2009.
[23] S. Succi. The Lattice Boltzmann Equation. OXFORD University Press, 2001.
[24] M. C. Sukop and D. T. Thorne Jr. Lattice Boltzmann Modeling. An Introduction for Geoscientists and Engineers.
Springer-Verlag, 2006, 2007.
[25] J.H. Sung and M.L. Shuler. A micro cell culture analog (CCA) with 3-D hydrogel culture of multiple cell lines to assess
metabolism-dependent cytotoxicity of anti-cancer drugs. Lab on a Chip - Miniaturisation for Chemistry and Biology,
9(10):1385–1394, 2009.
[26] R. G. Szafran. CFD vs DFD. A lattice-Boltzmann model. Presentation, October 2010.
[27] R. G. Szafran and Sz. Modelski. Badania do´swiadczalne i modelowanie CFD hydrodynamiki przepływu zawiesiny w
mikrokomorach modułu membranowego. In˙zynieria i Aparatura Chemiczna, 46(4/5):120–124, 2007.
[28] R.G. Szafran and A. Kmiec. Application of CFD modelling technique in engineering calculations of three-phase flow
hydrodynamics in a jet-loop reactor. International Journal of Chemical Reactor Engineering, 2, 2004.
[29] R.G. Szafran and A. Kmiec. CFD modeling of heat and mass transfer in a spouted bed dryer. Industrial and Engineering
Chemistry Research, 43(4):1113–1124, 2004.
[30] R.G. Szafran and A. Kmiec. Point-by-point solution procedure for the computational fluid dynamics modeling of
long-time batch drying. Industrial and Engineering Chemistry Research, 44(20):7892–7898, 2005.
[31] R.G. Szafran, W. Ludwig, and P. Patronik. Bezinwazyjne metody pomiaru pól prędkości płynu. Część I. opis układu
pomiarowego. Przemysł Chemiczny, 90(4):583–586, 2010.
[32] R.G. Szafran, W. Ludwig, and P. Patronik. Bezinwazyjne metody pomiaru pól prędkości płynu. Część II. walidacja
zestawu pomiarowego oraz kodów numerycznych numerycznych cfd i dfd. Przemysł Chemiczny, 90(4):587–590, 2010.
[33] I. Wyzkiewicz, I. Grabowska, M. Chudy, Z. Brzozka, M. Jakubowska, T. Wisniewski, and A. Dybko. Self-regulating
heater for microfluidic reactors. Sensors and Actuators, B: Chemical, 114(2):893–896, 2006.
[34] W. Xian and A. Takayuki. Multi-GPU performance of incompressible flow computation by lattice boltzmann method
on GPU cluster. Parallel Computing, 2011.
[35] Y. Zhao, F. Qiu, Z. Fan, and A. Kaufman. Flow simulation with locally-refined LBM. In Proceedings - I3D 2007, ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages 181–188, 2007. |
|
| |
|
|
| |
Abate A.R., Lee D., Holtze C., Krummel A., Do T., Weitz D.A. Functionalized glass coating for PDMS microfluidic devices. W: Lab on a chip technology (Vol.1): Fabrication and microfluidics. Herold K.E., Rasooly A., Caister Academic Press, Norfolk, 2009, 17-30. Arayanarakool R., Shiu L., van den Berg A., Eijkel J.C.T. A new method of UV-patternable hydophobization of micro- and nanofluidic networks. Lab Chip; 2011, 11, 4260-4266. Cavallaro U., Christofori G. Molecular mechanisms of tumor angiogenesis and tumor progression. Journal of Neuro-Oncology; 2000, 50, 63-70. Chaw K.C., Manimaran M., Tay E.H., Swaminathan S. Multi-step microfluidic device for studying cancer metastasis. Lab Chip; 2007, 7, 1041-1047. Cotton D.P.J., Popel A., Graz I.M., Lacour S.P. Photopattering the mechanical properties of polydimethylsiloxane films. Journal of Applied Physics; 2011, 109, 054905. Dimov I.K., Basabe-Desmonts L., Garcia-Cordero J.L., Ross B.M., Ricco A.J., Lee L.P. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip; 2011, 11, 845-850. Erickson D. Vivo-fluidics and programmable matter. W: Microfluidic Based Microsystems. Fundamentals and Applications. Kakac S., Kosoy B., Li D., Pramuanjaroenkij A.; Springer, Dodrecht, 2009, 553-576. Fukumura D., Jain R.K. Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvasc Res. 2007; 74(2-3), 72-84. Garrel D. A natural Liquid Cartilage Extract brings new hope for patients with metastatic renal cell carcinoma. 2004
http://www.angioworld.com/DominiqueGarrel.html Gupta M.K., Qin R.Y. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol; 2003, 9(6), 1144-1155. Haigh J.J., Morelli P.I., Gerhardt H., Haigh K., Tsien J., Damert A., Miquerol L., Muhlner U., Klein R., Ferrara N., Wagner E.F., Betsholtz C., Nagy A. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Developmental Biology; 2003, 262, 225-241. Harper J., Moses M.A. Molecular regulation of tumor angiogenesis mechanism and therapeutic implications. Cancer: cell structures, carcinogens and genome instability. Experimentia suplementum; 2006, 96, 223-226 Haycox C.L., Leach-Scampavia D., Olerud J.E., Ratner B.D. Quantitative detection of silicone in skin by means of electron spectroscopy for chemical analysis (ESCA). J Am Acad Dermatol; 1999, 40, 719-725. Herold K., Rasooly A. Volume 1: Fabrication and microfluidics. W: Lab on a chip technology. Caister Academic Press; Norfolk, 2009, xi-xiv; 1-5. Higgins J.M., Eddington D.T., Bhatia S.N., Mahadevan L. Sickle cell vasoocclusion and rescue in a microfluidic device. PNAS; 2007, 104(51), 20496-20500. Ingber D., Parker K.K., Hamilton G., Bahinski A., Levner D., Wikswo J., Przekwas A. Wyss Institute to receive up to $37 million from DARPA to integrate Multiple Organ-on-Chip Systems to mimic the whole human body. 2012
http://wyss.harvard.edu/viewpressrelease/91/wyss-institute-to-receive-up-to-37-million-from-darpa-to-integrate-multiple-organonchip-systems-to-mimic-the-whole-human-body Ishikawa T., Fujiwara H., Matsuki N., Yoshimoto T., Imai Y., Ueno H., Yamaguchi T. Assymetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence. Biomed Microdevices; 2011, 13, 159-167. Jaśkowska D. Warunki pękania i zniszczenia szkła. 2006
http://www.ikb.poznan.pl/zaklady/komp/dydaktyka/dyplomy/prace_dyplomowe/DYPLOM_D_JASKOWSKA.pdf Jeong G.S., Kwon G.H., Kang A.R., Jung B.Y., Park Y., Chung S., Lee S-H. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Biomed Microdevices; 2011, 13, 717-723. Khan O.F., Sefton M.V. Endothelial cell behaviour within a microfluidic mimic of the flow channels of a modular tissue engineered construct. Biomed Microdevices; 2011, 13, 69-87. Kim C., Chung S., Yuchun L., Kim M-C., Chan J.K.Y., Asada H.H., Kamm R.D. In vitro angiogenesis assai for the study of cell-encapsulation therapy. Lab Chip; 2012, 12, 2942-2950. Kirby B.J. Hydraulic circuit analysis. W: Micro- and nanoscale fluid mechanics. Transport in microfluidic devices. Cambridge Academic Press, New York, 2010, 60-78. Kobel S.A., Burri O., Griffa A., Girotra M., Seitz A., Lutolf M.P. Automated analysis of single stem cells in microfluidic traps. Lab Chip; 2012, 12, 2843-2849. Lim Y.C., Kouzani A.Z., Duan W. Lab-on-a-chip: a component view. Microsyst Technol; 2010, 16, 1995-2015. Lin K.Y., Maricevich M., Bardeesy N., Weissleder R., Mahmood U. In vivo quantitative microvasculature phenotype imaging of healthy and malignant tissues using a fiber-optic confocal laser microprobe. Translational Oncology; 2008, 1(2), 84-94. Liu H-B., Gong H-Q. Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser. J. Micromech. Microeng.; 2009, 19, 037002(8pp) Lobov I., Brooks P.C., Lang R.A. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. PNAS; 2002, 99(17), 11205-11210. Luu L., Roman P.A., Mathews S.A., Ramella-Roman J.C. Microfluidic based phantoms of superficial vascular network. Biomedical Optics Express; 2012, 3(6), 1350-1364. Maltezos G., Lee J., Rajagopal A., Scholten K., Kartalov E., Scherer A. Microfluidic blood filtration device. Biomed Microdevices; 2011, 13, 143-146. Marasso S.L., Giuri E., Canavese G., Castagna R., Quaglio M., Ferrante I., Perrone D., Cocuzza M. A multilevel Lab on chip platform for DNA analysis. Biomed Microdevices; 2011, 13, 19-27. Mc Donald D.M. Angiogenesis and vascular remodeling in inflammation and cancer: biology and architecture of the vasculature. W: Angiogenesis an integrative approach from science to medicine. Figg W.D., Folkman J; Springer, New York, 2008, 17-35. Milde F., Bergdorf M., Koumoutsakos P. A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophysical Journal; 2008, 95, 3146-3160. Munn L.L., Jain A. Design and fabrication of microfluidic devices for flow-based separation of blood cells. W: Lab on a chip Technology (Vol.2). Herold K.E., Rasooly A; Caister Academic Press, Norfolk, 2009, 29-43. Noh J., Kim H.C., Chung T.D. Biosensors in microfluidic chips. Top Curr Chem; 2011, 304, 117-152. Papetti M., Herman I.M. Mechanisms of normal and tumor-derived angiogenesis. Am J Psychiol Cell Psychiol; 2002, 282, C947-C970. Parzuchowski P. Poliestry. Technologia tworzyw sztucznych. 2007
http://www.ch.pw.edu.pl/~pparzuch/ids/wyklad%20tts/tts.html/W11-poliestry.ppt Parzuchowski P. Polimery akrylowe. Technologia tworzyw sztucznych. 2007
http://www.ch.pw.edu.pl/~pparzuch/ids/wyklad%20tts/tts.html/W10-akrylowe.ppt Price G.M., Wong K.H.K., Truslow J.G., Leung A.D., Acharya C., Tien J. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials; 2010, 31, 6182-6189. Scharnweber T., Truckenmuller R., Schneider A.M., Welle A., Reinhardt M., Giselbrecht S. Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-litography. Lab Chip; 2011, 11, 1368-1371. Shirinifard A., Gens J.S., Zaitlen B.L., Poławski N.J., Swat M., Glazier J.A. 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE; 2009, 4(10), e7190. Sizemskaja V. Lab on chip. 2009.
http://tera.chem.ut.ee/~ivo/kt/lab_on_a_chip.htm Spotts J. Fabrication of PDMS microfluidic devices. Microfluidics Course Institute for Systems Biology; 2008.
http://corefacilities.systemsbiology.net/foswiki/pub/Microfluidics/IntroLectures/PDMS_Microfluidic_Device_Fabrication.pdf Tang S.K.Y., Whitesides G.M. Basic microfluidic and soft lithographic techniques. W: Optofluidics: Fundamentals, Devices and Applications. Y. Fainman, Lee L., Psaltis D., Yang C.; McGraw-Hill Proffesional, San Diego, 2010, 7-31. Tang X., Zheng B. A PDMS viscometer for assaying endoglucanase activity. Analyst; 2011, 136 1222-1226. Teste B., Malloggi F., Siaugue J-M., Varenne A., Kanoufi F., Descroix S. Microchip integrating magnetic nanoparticles for allergy diagnosis. Lab Chip; 2011, 11, 4207-4213. Travasso R.D.M, Poiré E.C, Castro M., Rodrguez-Manzaneque J.C., A. Hernández-Machado. Tumor angiogenesis and vascular pattering: a mathematical model. PLoS ONE; 2011, 6(5), e19989. Van Midwound P.M., Janse A., Merema M.T., Groothuis G.M.M., Verpoorte E. Comparison of biocompatibility and absorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem.; 2012, 84, 3938-3944. Velve-Casquillas G., Le Berre M., Piel M., Tran P.T. Microfluidic tools for cell biological research. Nano Today; 2010, 5, 28-47. Vickerman V., Blundo J., Chung S., Kamm R.D. Design, fabrication and implementation of a novel multiparameter control microfluidic platform for three-dimensional cell culture anr real-time imaging. Lab Chip; 2008, 8(9), 1468-1477. Wang L., Zhang Z-L., Wdzieczak-Bakala J., Pang D-W., Liu J., Chen Y. Patterning cells and shear flow conditions: Convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response. Lab Chip; 2011, 11, 4235-4240. Weibel D.B., Whitesides G.M. Appliactions of microfluidics in chemical biology. Current Opinion in Chemical Biology; 2006, 10, 584-591. Weigl B.H., Bardell R.L., Cabrera C.R. Lab-on-a-chip for drug development. Advanced Drug Delivery Reviews; 2003, 55, 349-377 Wicki A., Christofori G. The Angiogenic Switch in Tumorgenesis. W: Tumor Angiogenesis. Basic Mechanisms and Cancer Therapy. Marmé D., Fusenig N; Springer, Berlin Heidelberg New York, 2008, 67-88. Wierzuchowska D. Hydrostatyka i hydrodynamika. Elementy hemodynamiki. 2012.
www.ap.krakow.pl/biofiz/wyklady/wyklad_2.pps
Wolfe D.B., Ashcom J.B., Hwang J.C., Schaffer C.B., Mazur E., Whitesides G.M. Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser. Adv. Mater.; 2003, 15, 62-65. Wong I., Ho C-M. Surface property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluidics; 2009, 7(3), 291-306. Wood L., Kamm R., Asada H. Stochastic modeling and identification of emergent behaviors of an Endothelial Cell population in angiogenic pattern formation. The International Journal of Robotics Research; 2011, 30(6), 659-677. Wu H., Huang B., Zare R.N. Construction of microfluidic chips Rusing polydimethylsiloxane for adhesive bonding. Lab Chip; 2005, 5, 1393-1398. Zetter B. Angiogenesis and tumor metastasis. Annu. Rev. Med; 1998, 49, 407-424. Zhang Q., Liu T., Qin J. A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab Chip; 2012, 12, 2837-2842. Zheng S., Lin H.K., Lu B., Williams A., Datar R., Cote R.J., Tai Y-C. 3D microfiler device for viable circulating tumor cell (CTC) enrichment for blood. Biomed Microdevices; 2011, 13, 203-213. Zhou J., Ellis A.V., Voelcker N.H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis; 2010, 31, 2-16. Zielonka T.M. Angiogeneza – Część I. Mechanizm powstawania nowych naczyń krwionośnych. Alergia Astma Immunologia; 2003, 8(4), 169-174. Zielonka T.M. Angiogeneza. Część II. Czynniki modulujące proces powstawania nowych naczyń krwionośnych. Alergia Astma Immunologia; 2004, 9(1), 25-31. |
|
| |
|
|
| |
|
|
| |
|
|
|
|